Record-Breaking Space Discoveries of 2016!
2016 was a lot of things, but for astronomers, it meant the discovery of some of the farthest, faintest, and youngest objects in the universe we’ve seen yet.
A new study of fossilized dinosaur embryos suggests that the young of these prehistoric animals were slow to develop, with some spending up to sixth months inside their eggs before hatching. Detailed in the journal Proceedings of the National Academy of Sciences, this drawn-out development cycle not only surprised scientists—it may have contributed to the downfall of the dinosaurs.
“We know very little about dinosaur embryology, yet it relates to so many aspects of development, life history, and evolution,” said study co-author Mark Norell, Macaulay Curator of Paleontology at the American Museum of Natural History. “This work is a great example of how new technology and new ideas can be brought to old problems.”
Using a combination of computed tomography (CT) scanning and powerful microscopes, Norell and colleagues from the University of Calgary and Florida State University examined the teeth of fossilized dinosaur embryos in unprecedented detail, shining new light on specimens about which not much is known.
Read more about this new research on the blog.
A very interesting documentary about the Universe.
Throwback Thursday: Do you really love science?
“That’s okay, because you’re a scientist! Your old theory — or way of making sense of the world — now gets revised, and replaced with a new one that’s even better at describing the full suite of phenomena you’re aware of.”
When you first venture out into the world, you’re armed, as a human being, with an incredible intelligence, but with no experience. All sorts of basic things must be learned, often the hard way: hot things will burn you, hot things that don’t look hot will also burn you, and that even very cold things will burn you, too. Figuring those things out – and the process by which you learn them – is science, in and of itself. But to move forward requires that we understand why, and that’s where scientific theories, leaps and even revolutions come into play. Don’t let bad science reporting take you away from what science is really all about: the knowledge and joy of figuring out how the world and Universe really works.
If you can dream it, you can do it
Walt Disney (1901- 1966)
A galaxy cluster or cluster of galaxies is a structure that consists of anywhere from hundreds to thousands of galaxies bound together by gravity.[1] They are the largest known gravitationally bound structures in the universe and were the largest known structures in the universe until the 1980s when superclusters were discovered.[2] One of the key features of clusters is the intracluster medium or ICM. The ICM consists of heated gas between the galaxies and has a temperature on the order of 7-9 keV. Galaxy clusters should not be confused with star clusters such as open clusters, which are structures of stars within galaxies, as well as globular clusters, which typically orbit galaxies. Small aggregates of galaxies are referred to as groups of galaxies rather than clusters of galaxies. The groups and clusters can themselves cluster together to formsuperclusters.
The radiant of the Quadrantids lies in the demoted constellation Quadrans Muralis.
The Mural Quadrant is an angle measuring device mounted on or built into a wall. Quadrans Muralis appears on some 19th-century star atlases between Hercules, Boötes and Draco, and different astronomers changed the stars from time to time.
In the early 1920’s, the International Astronomical Union divided up the sky into official constellations for consistency in star naming. 88 constellations remained, but over 30 historical constellations, including Quadrans Muralis, didn’t make the cut.
Most of the Quadrans Muralis stars are now within the boundaries of the official constellation Boötes, but the name of the meteor shower did not change.
Meteor showers are usually the residue that collects in the orbits of comets. Unlike most meteor showers’ parent bodies, the Quadrantids are associated with an asteroid—2003 EH1.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Dark matter is a hypothetical kind of matter that cannot be seen with telescopes but would account for most of the matter in the universe. The existence and properties of dark matter are inferred from its gravitational effects on visible matter, on radiation, and on the large-scale structure of the universe. Dark matter has not been detected directly, making it one of the greatest mysteries in modern astrophysics.
Dark matter neither emits nor absorbs light or any other electromagnetic radiation at any significant level. According to the Planck mission team, and based on the standard model of cosmology, the total mass–energy of the known universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy.[2][3] Thus, dark matter is estimated to constitute 84.5% [note 1] of the total matter in the universe, while dark energy plus dark matter constitute 95.1% of the total mass–energy content of the universe.[4][5][6]
Ask Ethan #103: Have We Solved The Black Hole Information Paradox?
“How is Hawking’s theory of black holes storing information on the shell of an event horizon different than what Susskind said decades ago about black holes storing information on the shell of an event horizon? Did Hawking just pull a Steve Jobs and proclaim something new that Android figured out years before? Or is this actually new stuff?”
Stephen Hawking is claiming that the black hole information paradox has now been resolved, with the information encoded on the event horizon and then onto the outgoing radiation via a new mechanism that he’ll detail in a paper due out next month, along with collaborators Malcom Perry and Andrew Strominger. Only, that’s not really what’s happening here. While he does have a new idea and there is a paper coming out, its contents do not solve the information paradox, but merely provide a hypothesis as to how it may be solved in the future.