Heads Up, This Is Tomorrow Night! I Hope It's Clear Where I Am To See It But Considering I'm In The Pacific

Heads up, this is tomorrow night! I hope it's clear where I am to see it but considering I'm in the Pacific Northwest, I don't have super high hopes. Get a look if you can, though! Rare to see a blue moon that's actually red :)

A Total Lunar Eclipse is Coming: 10 Things to Know

If you were captivated by August’s total solar eclipse, there’s another sky show to look forward to on Jan. 31: a total lunar eclipse!

image

Below are 10 things to know about this astronomical event, including where to see it, why it turns the Moon into a deep red color and more…

1. First things first. What’s the difference between solar and lunar eclipses? We’ve got the quick and easy explanation in this video:

2. Location, location, location. What you see will depend on where you are. The total lunar eclipse will favor the western U.S., Alaska, Hawaii, and British Columbia on Jan. 31. Australia and the Pacific Ocean are also well placed to see a major portion of the eclipse, if not all of it.

image

3. Color play. So, why does the Moon turn red during a lunar eclipse? Here’s your answer:

4. Scientists, stand by. What science can be done during a lunar eclipse? Find out HERE. 

5. Show and tell. What would Earth look like from the Moon during a lunar eclipse? See for yourself with this artist’s concept HERE. 

6. Ask me anything. Mark your calendars to learn more about the Moon during our our Reddit AMA happening Monday, Jan. 29, from 3-4 pm EST/12-1 pm PST.

A Total Lunar Eclipse Is Coming: 10 Things To Know

7. Social cues. Make sure to follow @NASAMoon and @LRO_NASA for all of the latest Moon news leading up to the eclipse and beyond.

8. Watch year-round. Can’t get enough of observing the Moon? Make a DIY Moon Phases Calendar and Calculator that will keep all of the dates and times for the year’s moon phases right at your fingertips HERE.

A Total Lunar Eclipse Is Coming: 10 Things To Know

Then, jot down notes and record your own illustrations of the Moon with a Moon observation journal, available to download and print from moon.nasa.gov.

9. Lesson learned. For educators, pique your students’ curiosities about the lunar eclipse with this Teachable Moment HERE.

10. Coming attraction. There will be one more lunar eclipse this year on July 27, 2018. But you might need your passport—it will only be visible from central Africa and central Asia. The next lunar eclipse that can be seen all over the U.S. will be on Jan. 21, 2019. It won’t be a blue moon, but it will be a supermoon.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

Tags

More Posts from Fillthevoid-with-space and Others

I wish I’d found this before Episode 19, dang it! Such good gifs of astronauts, though.

Coffee in Space: Keeping Crew Members Grounded in Flight

Happy National Coffee Day, coffee lovers! 

On Earth, a double shot mocha latte with soymilk, low-fat whip and a caramel drizzle is just about as complicated as a cup of coffee gets. Aboard the International Space Station, however, even just a simple cup of black coffee presents obstacles for crew members.

image

Understanding how fluids behave in microgravity is crucial to bringing the joys of the coffee bean to the orbiting laboratory. Astronaut Don Pettit crafted a DIY space cup using a folded piece of overhead transparency film. Surface tension keeps the scalding liquid inside the cup, and the shape wicks the liquid up the sides of the device into the drinker’s mouth.

image

The Capillary Beverage investigation explored the process of drinking from specially designed containers that use fluid dynamics to mimic the effect of gravity. While fun, this study could provide information useful to engineers who design fuel tanks for commercial satellites!

image

The capillary beverage cup allows astronauts to drink much like they would on Earth. Rather than drinking from a shiny bag and straw, the cup allows the crew member to enjoy the aroma of the beverage they’re consuming.

image

On Earth, liquid is held in the cup by gravity. In microgravity, surface tension keeps the liquid stable in the container.

image

The ISSpresso machine brought the comforts of freshly-brewed coffees and teas to the space station. European astronaut Samantha Cristoforetti enjoyed the first cup of espresso brewed using the ISSpresso machine during Expedition 43.

image
image

Now, during Expedition 53, European astronaut Paolo Nespoli enjoys the same comforts. 

image

Astronaut Kjell Lindgren celebrated National Coffee Day during Expedition 45 by brewing the first cup of hand brewed coffee in space.

image

We have a latte going on over on our Snapchat account, so give us a follow to stay up to date! Also be sure to follow @ISS_Research on Twitter for your daily dose of space station science.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Allow Us To Reintroduce Someone … The Name’s Perseverance. 

Allow us to reintroduce someone … the name’s Perseverance. 

With this new name, our Mars 2020 rover has now come to life! Chosen by middle school student Alex Mather, Perseverance helps to remind ourselves that no matter what obstacles we face, whether it’s on the way to reaching our goals or on the way to Mars, we will push through. In Alex’s own words, ⁣⁣

“We are a species of explorers, and we will meet many setbacks on the way to Mars. However, we can persevere. We, not as a nation but as humans, will not give up. The human race will always persevere into the future.” ⁣

Welcome to the family.⁣ ❤️

⁣Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
30 Doradus, Located In The Heart Of The Tarantula Nebula, Is The Brightest Star-forming Region In Our

30 Doradus, located in the heart of the Tarantula nebula, is the brightest star-forming region in our galactic neighborhood. The nebula resides 170,000 light-years away in the Large Magellanic Cloud. Links to very large images in comments.

js


Tags

Asteroid to Fly Safely Past Earth on April 19

Asteroid Watch logo.  April 7, 2017

Artist’s impression of a Near-Earth Asteroid passing by Earth. Image Credit: ESA

A relatively large near-Earth asteroid discovered nearly three years ago will fly safely past Earth on April 19 at a distance of about 1.1 million miles (1.8 million kilometers), or about 4.6 times the distance from Earth to the moon. Although there is no possibility for the asteroid to collide with our planet, this will be a very close approach for an asteroid of this size. The asteroid, known as 2014 JO25, was discovered in May 2014 by astronomers at the Catalina Sky Survey near Tucson, Arizona – a project of NASA’s NEO Observations Program in collaboration with the University of Arizona. (An NEO is a near-Earth object). Contemporary measurements by NASA’s NEOWISE mission indicate that the asteroid is roughly 2,000 feet (650 meters) in size, and that its surface is about twice as reflective as that of the moon. At this time very little else is known about the object’s physical properties, even though its trajectory is well known. The asteroid will approach Earth from the direction of the sun and will become visible in the night sky after April 19. It is predicted to brighten to about magnitude 11, when it could be visible in small optical telescopes for one or two nights before it fades as the distance from Earth rapidly increases.

Asteroid 2014 JO25

Video above: This computer-generated image depicts the flyby of asteroid 2014 JO25. The asteroid will safely fly past Earth on April 19 at a distance of about 1.1 million miles (1.8 million kilometers), or about 4.6 times the distance between Earth and the moon. Video Credits: NASA/JPL-Caltech. Small asteroids pass within this distance of Earth several times each week, but this upcoming close approach is the closest by any known asteroid of this size, or larger, since asteroid Toutatis, a 3.1-mile (five-kilometer) asteroid, which approached within about four lunar distances in September 2004. The next known encounter of an asteroid of comparable size will occur in 2027 when the half-mile-wide (800-meter-wide) asteroid 1999 AN10 will fly by at one lunar distance, about 236,000 miles (380,000 kilometers). The April 19 encounter provides an outstanding opportunity to study this asteroid, and astronomers plan to observe it with telescopes around the world to learn as much about it as possible. Radar observations are planned at NASA’s Goldstone Solar System Radar in California and the National Science Foundation’s Arecibo Observatory in Puerto Rico, and the resulting radar images could reveal surface details as small as a few meters. The encounter on April 19 is the closest this asteroid has come to Earth for at least the last 400 years and will be its closest approach for at least the next 500 years. Also on April 19, the comet PanSTARRS (C/2015 ER61) will make its closest approach to Earth, at a very safe distance of 109 million miles (175 million kilometers). A faint fuzzball in the sky when it was discovered in 2015 by the Pan-STARRS NEO survey team using a telescope on the summit of Haleakala, Hawaii, the comet has brightened considerably due to a recent outburst and is now visible in the dawn sky with binoculars or a small telescope. JPL manages and operates NASA’s Deep Space Network, including the Goldstone Solar System Radar, and hosts the Center for Near-Earth Object Studies for NASA’s Near-Earth Object Observations Program, an element of the Planetary Defense Coordination Office within the agency’s Science Mission Directorate. More information about asteroids and near-Earth objects can be found at: http://cneos.jpl.nasa.gov http://www.jpl.nasa.gov/asteroidwatch For more information about NASA’s Planetary Defense Coordination Office, visit: http://www.nasa.gov/planetarydefense For asteroid and comet news and updates, follow AsteroidWatch on Twitter: https://twitter.com/AsteroidWatch Image (mentioned), Video, Text, Credits: NASA/Tony Greicius/JPL/DC Agle. Greetings, Orbiter.ch Full article


Tags
Planetary Kiss, Coming To A Sky Near You On 21 Dec. (image: Pete Lawrence) Https://www.instagram.com/p/CIdav8cnXYN/?igshid=1tjshkkdl24f4

Planetary Kiss, coming to a sky near you on 21 Dec. (image: Pete Lawrence) https://www.instagram.com/p/CIdav8cnXYN/?igshid=1tjshkkdl24f4


Tags
“It Sounds Far Fetched Even For The Plot Of A Sci-fi Film.
“It Sounds Far Fetched Even For The Plot Of A Sci-fi Film.
“It Sounds Far Fetched Even For The Plot Of A Sci-fi Film.
“It Sounds Far Fetched Even For The Plot Of A Sci-fi Film.

“It sounds far fetched even for the plot of a sci-fi film.

NASA scientists have proposed a radical idea to launch a magnetic field around Mars, with hopes it could protect the red planet from intense solar wind and allow humans to explore alongside rovers.

Jim Green, NASA’s Planetary Science Division Director, revealed the idea today at the Planetary Science Vision 2050 Workshop in Washington DC…

The proposal would create a dipole field –a pair of equal and oppositely charged magnets – in an orbit between Mars and the sun, at a point known as Mars L1.

This ‘artificial magnetic field’ would put Mars inside a ‘magnetotail,’ protecting it from the harsh solar wind.

Without the barrage of high-energy particles, Mars’ atmosphere would begin to rebuild itself over time.

In just a matter of years, the simulations show the planet could achieve an ‘Earth comparable field.’

Increasing the pressure would cause the equator to heat up, leading the polar cap to collapse, Green says…"

Source: http://www.dailymail.co.uk/sciencetech/article-4276210/NASA-unveils-plan-surround-Mars-magnetic-field.html?ITO=applenews


Tags

The Past, Present and Future of Exploration on Mars

Today, we’re celebrating the Red Planet! Since our first close-up picture of Mars in 1965, spacecraft voyages to the Red Planet have revealed a world strangely familiar, yet different enough to challenge our perceptions of what makes a planet work.

image

You’d think Mars would be easier to understand. Like Earth, Mars has polar ice caps and clouds in its atmosphere, seasonal weather patterns, volcanoes, canyons and other recognizable features. However, conditions on Mars vary wildly from what we know on our own planet.

Join us as we highlight some of the exploration on Mars from the past, present and future:

PAST

Viking Landers

image

Our Viking Project found a place in history when it became the first U.S. mission to land a spacecraft safely on the surface of Mars and return images of the surface. Two identical spacecraft, each consisting of a lander and an orbiter, were built. Each orbiter-lander pair flew together and entered Mars orbit; the landers then separated and descended to the planet’s surface.

image

Besides taking photographs and collecting other science data, the two landers conducted three biology experiments designed to look for possible signs of life.

Pathfinder Rover

image

In 1997, Pathfinder was the first-ever robotic rover to land on the surface of Mars. It was designed as a technology demonstration of a new way to deliver an instrumented lander to the surface of a planet. Mars Pathfinder used an innovative method of directly entering the Martian atmosphere, assisted by a parachute to slow its descent and a giant system of airbags to cushion the impact.

image

Pathfinder not only accomplished its goal but also returned an unprecedented amount of data and outlived its primary design life.

PRESENT

Spirit and Opportunity

image

In January 2004, two robotic geologists named Spirit and Opportunity landed on opposite sides of the Red Planet. With far greater mobility than the 1997 Mars Pathfinder rover, these robotic explorers have trekked for miles across the Martian surface, conducting field geology and making atmospheric observations. Carrying identical, sophisticated sets of science instruments, both rovers have found evidence of ancient Martian environments where intermittently wet and habitable conditions existed.

image

Both missions exceeded their planned 90-day mission lifetimes by many years. Spirit lasted 20 times longer than its original design until its final communication to Earth on March 22, 2010. Opportunity continues to operate more than a decade after launch.

Mars Reconnaissance Orbiter

image

Our Mars Reconnaissance Orbiter left Earth in 2005 on a search for evidence that water persisted on the surface of Mars for a long period of time. While other Mars missions have shown that water flowed across the surface in Mars’ history, it remained a mystery whether water was ever around long enough to provide a habitat for life.

image

In addition to using the rover to study Mars, we’re using data and imagery from this mission to survey possible future human landing sites on the Red Planet.

Curiosity

image

The Curiosity rover is the largest and most capable rover ever sent to Mars. It launched November 26, 2011 and landed on Mars on Aug. 5, 2012. Curiosity set out to answer the question: Did Mars ever have the right environmental conditions to support small life forms called microbes? 

image

Early in its mission, Curiosity’s scientific tools found chemical and mineral evidence of past habitable environments on Mars. It continues to explore the rock record from a time when Mars could have been home to microbial life.

FUTURE

Space Launch System Rocket

image

We’re currently building the world’s most powerful rocket, the Space Launch System (SLS). When completed, this rocket will enable astronauts to begin their journey to explore destinations far into the solar system, including Mars.

Orion Spacecraft

image

The Orion spacecraft will sit atop the Space Launch System rocket as it launches humans deeper into space than ever before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities.

Mars 2020

image

The Mars 2020 rover mission takes the next step in exploration of the Red Planet by not only seeking signs of habitable conditions in the ancient past, but also searching for signs of past microbial life itself.

image

The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a “cache” on the surface of Mars. The mission will also test a method for producing oxygen from the Martian atmosphere, identify other resources (such as subsurface water), improve landing techniques and characterize weather, dust and other potential environmental conditions that could affect future astronauts living and working on the Red Planet.

image

For decades, we’ve sent orbiters, landers and rovers, dramatically increasing our knowledge about the Red Planet and paving the way for future human explorers. Mars is the next tangible frontier for human exploration, and it’s an achievable goal. There are challenges to pioneering Mars, but we know they are solvable. 

To discover more about Mars exploration, visit: https://www.nasa.gov/topics/journeytomars/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags

Hubble Spots Two Interacting Galaxies Defying Cosmic Convention

NASA - Hubble Space Telescope patch. March 24, 2017

Some galaxies are harder to classify than others. Here, Hubble’s trusty Wide Field Camera 3 (WFC3) has captured a striking view of two interacting galaxies located some 60 million light-years away in the constellation of Leo (The Lion). The more diffuse and patchy blue glow covering the right side of the frame is known as NGC 3447 — sometimes NGC 3447B for clarity, as the name NGC 3447 can apply to the overall duo. The smaller clump to the upper left is known as NGC 3447A. Overall, we know NGC 3447 comprises a couple of interacting galaxies, but we’re unsure what each looked like before they began to tear one another apart. The two sit so close that they are strongly influenced and distorted by the gravitational forces between them, causing the galaxies to twist themselves into the unusual and unique shapes seen here. NGC 3447A appears to display the remnants of a central bar structure and some disrupted spiral arms, both properties characteristic of certain spiral galaxies. Some identify NGC 3447B as a former spiral galaxy, while others categorize it as being an irregular galaxy.

Hubble Space Telescope

For Hubble’s image of the Whirlpool Galaxy, visit:  http://hubblesite.org/ http://www.nasa.gov/hubble http://www.spacetelescope.org/ Image, Animation, Credits: ESA/Hubble & NASA/Text Credits: European Space Agency/NASA/Karl Hille. Best regards, Orbiter.ch Full article


Tags

What is an upcoming project/mission you're most excited for?

It is likely that I’ll be assigned a mission to the International Space Station (ISS) within the next few years.  We’ve had a continuous presence on the Space Station for 17 years now, along with our international partners (Russian Space Agency, European Space Agency, Japanese Space Agency, and Canadian Space Agency).  Missions on the ISS typically last 6 months.  I’m incredibly excited to contribute to the impressive array of scientific experiments that we are conducting every day on ISS (I am a scientist after all!), and very much look forward to the potential of going for a spacewalk and gaining that perspective of gazing down on the fragile blue ball that is our home from above.  Beyond that, being part of test missions on the Orion spacecraft (currently under construction at NASA!) would be an extraordinary opportunity.  The current NASA plan is to send astronauts in Orion in a mission that will go 40,000 miles beyond the Moon in the early 2020s, reaching a distance further than that ever travelled by humans.  I’d certainly be game for that! 


Tags
Ep. 6 Star Classification Part 2: Cannon and Classification - HD and the Void
Jump from the lifecycle of stars to the various ways we've chosen to interpret observational data on stars, from observing the bright sky-dots to evaluating how bright they are by comparing them to each other, and all the new things we can do with...

Did you know that when we classify stars, we’re comparing different types of stars but also stars at different stages of their life cycles? This is the second in a two-part episode about star classifications (go listen to Part 1 if you haven’t already; or listen to this one first and then listen to Part 1, it’s not exactly spoiler territory here). In this podcast, I talk about the various ways we've chosen to interpret observational data on stars, from observing the bright sky-dots to evaluating how bright they are by comparing them to each other, and all the new things we can do with new observational techniques. Never fear, Harvard observatory’s computers make a significant appearance again in this one!

I did my best to explain everything in as comprehensible terms as possible but you can hit me up with questions if you have them! I’m also on Twitter at @HDandtheVoid if you’d rather ask me there. And go ahead and check out the podcast on iTunes, rate it or review it if you’d like, and subscribe! I’ll always post all the extras here on tumblr but iTunes is probably more convenient for downloading.

Below the cut are my sources, music credits (thanks Elena for the filler music suggestion, very on-the-nose), vocab list, and the transcript. I mention a couple of books and quote a couple people in this episode so if you want to see that written down, those sources are there as well. Let me know what you think of this episode, let me know what you think I should research next*, tell me a fun space fact… anything’s helpful!

*(My thoughts were planets or looking into a couple major astronomers; either Edmond Halley or Tycho Brahe <3 or maybeStephen Hawking? Let me know by the 23rd so I can get a podcast up by July 3rd!)

Glossary:

Charge-Coupled Device (CCD) - a device that moves an electrical charge to shift the signal between incoming photons to turn them into electron charges that can then be read as an image. It’s used in digital cameras and in astronomy for UV-to-infrared applications.

deep-sky object - any cosmological object that isn’t individual stars or something from our Solar System. It’s a classification that includes nebulae, galaxies, and star clusters, and it has its roots in amateur astronomy.

Hipparcos satellite - the European Space Agency ‘high precision parallax collecting satellite’ that operated between 1989 and 1993. It gathered astronomical and photometric data of stars and was highly accurate in positioning and cataloging the star information it acquired on its four-year mission. Its data was published in 1997 in two catalogs: the Hipparcos Catalogue, distributed in print as well as on CDs and mapped 118,218 stars; and the Tycho Catalogue, distributed only on CDs and mapped 1,058,332 stars. The Tycho-2 Catalogue was an updated version of the Tycho Catalogue made with more refined imaging techniques and re-released on CDs and online in 2000 with over 2 million stars mapped.

neutron star - a type of star that has gone supernova, when the surviving core is 1.5 to 3 solar masses and contracts into a small, very dense, very fast-spinning star.

pulsar - a type of neutron stars that spins very, very fast: a kind of variable star that emits light pulses usually between 0.0014 seconds and 8.5 seconds.

stellar photometry/photometrics - measuring the brightness of stars and the changes of brightness over time. Previously used photographic plates and visual equipment in professional observatories, but shifted after an international photoelectric system was established in 1951. Currently we use photoelectric devices, such as CCDs.

stellar spectra classification - developed at Harvard Observatory in the 20th century, a categorization of stars based on stellar surface temperatures rather than actual compositional differences, gravity, or luminosity in stars. From highest temperature to lowest, the seven main stellar types are O, B, A, F, G, K, and M. O, B, and A type stars are often referred to as early spectral types, while cool stars like G, K, and M are known as late type stars, even though these titles are based in disproven ideas about stellar evolution.

Script/Transcript

Sources:

Standard stellar types via University of College London

List/timeline of major historical star catalogs

A brief history of early star catalogs, since the International Astronomical Union made a new star catalog in 2016.

A history of the Messier list

A history of the Messier List and how amateur astronomers use it

The Messier List

A really detailed Messier List, including Messier’s own observations on the object along with what it is currently understood to be

`Deep Sky Observers Companion online database

The Caldwell List via SEDS

The Caldwell List via the Astronomical League

Translation of ‘Durchmusterung’ via PONS online translation

Some hilarious mnemonics that are an alternative to the girl-kissing one to remember the order of stellar spectra. I don't know why there’s an entire page dedicated to this but good on you, Caltech.

Photometry overview via the Astronomical Society of South Australia

Hipparcos Catalog via NASA

History of the Hipparcos satellite and subsequent catalogs via ESA

Tycho-2 Catalog via NASA

The Hipparchos and Tycho catalogues online and downloadable if you have a whole lot of storage space to put them in

The U.S. Navy’s Naval Meteorology and Oceanography Command website has a list of recommended informational catalogs, last updated in November 2004

Information on current star charts, specialized and general, and how to download them

The Research Consortium on Nearby Stars’ website, working on cataloging and characterizing all stars within 10 parsecs/32.6 light years of Earth

The Smithsonian Astrophysical Observatory star catalog, which goes to V=9. Please don’t ask me how the hell it works, I didn’t bother ordering it

Another SAO catalog via NASA’s High Energy Astrophysics Science Archive Research Center website

If you can figure out how to navigate this catalog, you should probably take over this podcast for me.

Soba, Dava. The Glass Universe: How the Ladies of the Harvard Observatory Took the Measure of the Stars. Viking: New York, 2016.

“After all, astronomers could not yet tie any given traits of stars, such as temperature or age, to the various groupings of spectral lines. What they needed was a consistent classification—a holding pattern for the stars—that would facilitate fruitful future research” (91).

“A good number of other blank spaces in her tables pointed up other lacunae, such as missing minimum values, uncertain periods, absent spectra, or questionable variable type” (113).

Annie Jump Cannon: “Since I have done almost all the world’s work in this one branch, it was necessary for me to do most of the talking” (158)

Ogilvie, Marilyn Bailey. Women in Science: Antiquity Through the Nineteenth Century. MIT P: Cambridge, MA, 1986. Located in Google Books preview.

Mack, Pamela E. “Straying from Their Orbits: Women in Astronomy in America.” In Women of Science: Righting the Record. Ed. Gabriele Kass-Simon, Patricia Farnes, Deborah Nash. Indiana U P: Bloomington, IN, 1993 (72-116). Located in Google Books preview.

Selin, Helaine. “Battani” Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer Science & Business Media: Berlin, Germany, 2011. Located in Google Books preview. 

Intro Music: ‘Better Times Will Come’ by No Luck Club off their album Prosperity

Filler Music: ‘Champagne Supernova’ by Oasis off their album (What’s the Story) Morning Glory?

Outro Music: ‘Fields of Russia’ by Mutefish off their album On Draught


Tags
Loading...
End of content
No more pages to load
  • jaero
    jaero liked this · 1 year ago
  • z3nko-kitsune
    z3nko-kitsune liked this · 1 year ago
  • begile5
    begile5 liked this · 1 year ago
  • asliceofpumpkinpie
    asliceofpumpkinpie liked this · 3 years ago
  • jayjer96
    jayjer96 liked this · 4 years ago
  • vacantwatchers
    vacantwatchers reblogged this · 4 years ago
  • ladybugsonfire
    ladybugsonfire liked this · 4 years ago
  • automaticdestinytrash
    automaticdestinytrash reblogged this · 4 years ago
  • ninomeira
    ninomeira liked this · 4 years ago
  • thevampirecat
    thevampirecat liked this · 4 years ago
  • r3tr0grad3
    r3tr0grad3 liked this · 5 years ago
  • jasmiine-ann
    jasmiine-ann liked this · 5 years ago
  • doodles-and-oodles
    doodles-and-oodles liked this · 5 years ago
  • noorhb
    noorhb reblogged this · 5 years ago
  • abyss-howl
    abyss-howl reblogged this · 5 years ago
  • icarus-ornithoptery
    icarus-ornithoptery reblogged this · 5 years ago
  • valengory1234
    valengory1234 liked this · 5 years ago
  • pheonixfidelity
    pheonixfidelity liked this · 5 years ago
  • atbman07
    atbman07 liked this · 5 years ago
  • odtokgfbhipi
    odtokgfbhipi liked this · 5 years ago
  • tipsorina
    tipsorina reblogged this · 5 years ago
  • babymoongoat
    babymoongoat liked this · 5 years ago
  • seperatestyle
    seperatestyle liked this · 5 years ago
  • power-puffer-gurl
    power-puffer-gurl reblogged this · 5 years ago
  • selecuri2002
    selecuri2002 liked this · 5 years ago
  • sllyrabbit
    sllyrabbit liked this · 5 years ago
  • animatedbooklover
    animatedbooklover liked this · 5 years ago
  • quanblovk
    quanblovk liked this · 6 years ago
  • space2wanders
    space2wanders liked this · 6 years ago
  • space2wanders
    space2wanders reblogged this · 6 years ago
  • intuitivealchemy
    intuitivealchemy liked this · 6 years ago
  • i-will-keep-on-ramblin
    i-will-keep-on-ramblin liked this · 6 years ago
fillthevoid-with-space - Fill the void with... SPACE
Fill the void with... SPACE

A podcast project to fill the space in my heart and my time that used to be filled with academic research. In 2018, that space gets filled with... MORE SPACE! Cheerfully researched, painstakingly edited, informal as hell, definitely worth everyone's time.

243 posts

Explore Tumblr Blog
Search Through Tumblr Tags