Must Return Soon

Must return soon

Golden Gate Bridge // Geek Creative

Golden Gate Bridge // Geek Creative

More Posts from Smparticle2 and Others

8 years ago
» Medical Specialties «
» Medical Specialties «
» Medical Specialties «
» Medical Specialties «
» Medical Specialties «
» Medical Specialties «
» Medical Specialties «
» Medical Specialties «
» Medical Specialties «
» Medical Specialties «

» Medical Specialties «

8 years ago
Shortly After He Finished Filming On The Opulent Set Of Baz Luhrmann’s ‘The Great Gatsby,’ Joel
Shortly After He Finished Filming On The Opulent Set Of Baz Luhrmann’s ‘The Great Gatsby,’ Joel

Shortly after he finished filming on the opulent set of Baz Luhrmann’s ‘The Great Gatsby,’ Joel headed off to the Jordanian desert to begin training for 'Zero Dark Thirty.'  With a heavy dose of mock horror, he said that it was quite a shock to his delicate system:

“An experience like ‘Gatsby’ really spoils you because you are treated like a king. You’re given a big trailer, someone brings fresh flowers to your trailer, there are dates and walnuts and coconut water in your fridge … really living large.“

Then, when he suddenly found himself roughing it in the torrid desert, “sharing a cubicle with five other guys, half of them military, and carrying 50-60 kilos of equipment … It was like, 'Baz!  Come and save me!’  You get a reality check."   


Tags
8 years ago
Gone With The Wind
Gone With The Wind
Gone With The Wind
Gone With The Wind
Gone With The Wind
Gone With The Wind
Gone With The Wind

Gone With The Wind

8 years ago

Cool! Go theoretical -and experimental-physics!

Heating Up Exotic Topological Insulators

Heating up exotic topological insulators

Fashion is changing in the avant-garde world of next-generation computer component materials. Traditional semiconductors like silicon are releasing their last new lines. Exotic materials called topological insulators (TIs) are on their way in. And when it comes to cool, nitrogen is the new helium.

This was clearly on display in a novel experiment at the National Institute of Standards and Technology (NIST) that was performed by a multi-institutional collaboration including UCLA, NIST and the Beijing Institute of Technology in China.

Topological insulators are a new class of materials that were discovered less than a decade ago after earlier theoretical work, recognized in the 2016 Nobel Prize in physics, predicted they could exist. The materials are electrical insulators on the inside and they conduct electricity on the outer surface. They are exciting to computer designers because electric current travels along them without shedding heat, meaning components made from them could reduce the high heat production that plagues modern computers. They also might be harnessed one day in quantum computers, which would exploit less familiar properties of electrons, such as their spin, to make calculations in entirely new ways. When TIs conduct electricity, all of the electrons flowing in one direction have the same spin, a useful property that quantum computer designers could harness.

Read more.

8 years ago
Making Twisted Semiconductors For 3-D Projection

Making twisted semiconductors for 3-D projection

A smartphone display that can produce 3-D images will need to be able to twist the light it emits. Now, researchers at the University of Michigan and the Ben-Gurion University of the Negev have discovered a way to mass-produce spiral semiconductors that can do just that.

Back in 1962, University of Michigan engineers E. Leith and J. Upatnieks unveiled realistic 3-D images with the invention of practical holography. The first holographic images of bird on a train were made by creating standing waves of light with bright and dark spots in space, which creates an illusion of material object. It was made possible by controlling polarization and phase of light, i.e. the direction and the timing of electromagnetic wave fluctuations.

The semiconductor helices created by U-M-led team can do exactly that with photons that pass through, reflected from, and emitted by them. They can be incorporated into other semiconductor devices to vary the polarization, phase, and color of light emitted by the different pixels, each of them made from the precisely designed semiconductor helices.

Read more.


Tags
8 years ago
(Image Caption: Brain Showing Hallmarks Of Alzheimer’s Disease (plaques In Blue). Credit: ZEISS Microscopy)

(Image caption: Brain showing hallmarks of Alzheimer’s disease (plaques in blue). Credit: ZEISS Microscopy)

New imaging technique measures toxicity of proteins associated with Alzheimer’s and Parkinson’s diseases

Researchers have developed a new imaging technique that makes it possible to study why proteins associated with Alzheimer’s and Parkinson’s diseases may go from harmless to toxic. The technique uses a technology called multi-dimensional super-resolution imaging that makes it possible to observe changes in the surfaces of individual protein molecules as they clump together. The tool may allow researchers to pinpoint how proteins misfold and eventually become toxic to nerve cells in the brain, which could aid in the development of treatments for these devastating diseases.

The researchers, from the University of Cambridge, have studied how a phenomenon called hydrophobicity (lack of affinity for water) in the proteins amyloid-beta and alpha synuclein – which are associated with Alzheimer’s and Parkinson’s respectively – changes as they stick together. It had been hypothesised that there was a link between the hydrophobicity and toxicity of these proteins, but this is the first time it has been possible to image hydrophobicity at such high resolution. Details are reported in the journal Nature Communications.

“These proteins start out in a relatively harmless form, but when they clump together, something important changes,” said Dr Steven Lee from Cambridge’s Department of Chemistry, the study’s senior author. “But using conventional imaging techniques, it hasn’t been possible to see what’s going on at the molecular level.”

In neurodegenerative diseases such as Alzheimer’s and Parkinson’s, naturally-occurring proteins fold into the wrong shape and clump together into filament-like structures known as amyloid fibrils and smaller, highly toxic clusters known as oligomers which are thought to damage or kill neurons, however the exact mechanism remains unknown.

For the past two decades, researchers have been attempting to develop treatments which stop the proliferation of these clusters in the brain, but before any such treatment can be developed, there first needs to be a precise understanding of how oligomers form and why.

“There’s something special about oligomers, and we want to know what it is,” said Lee. “We’ve developed new tools that will help us answer these questions.”

When using conventional microscopy techniques, physics makes it impossible to zoom in past a certain point. Essentially, there is an innate blurriness to light, so anything below a certain size will appear as a blurry blob when viewed through an optical microscope, simply because light waves spread when they are focused on such a tiny spot. Amyloid fibrils and oligomers are smaller than this limit so it’s very difficult to directly visualise what is going on.

However, new super-resolution techniques, which are 10 to 20 times better than optical microscopes, have allowed researchers to get around these limitations and view biological and chemical processes at the nanoscale.

Lee and his colleagues have taken super-resolution techniques one step further, and are now able to not only determine the location of a molecule, but also the environmental properties of single molecules simultaneously.

Using their technique, known as sPAINT (spectrally-resolved points accumulation for imaging in nanoscale topography), the researchers used a dye molecule to map the hydrophobicity of amyloid fibrils and oligomers implicated in neurodegenerative diseases. The sPAINT technique is easy to implement, only requiring the addition of a single transmission diffraction gradient onto a super-resolution microscope. According to the researchers, the ability to map hydrophobicity at the nanoscale could be used to understand other biological processes in future.


Tags
8 years ago

Dutch trains now all powered by wind energy

Dutch Trains Now All Powered By Wind Energy

All Dutch trains have become 100% powered by electricity generated by wind energy, the national railway company NS has said, making it a world’s first.

One windmill running for an hour can power a train for 120 miles, the companies said. Dutch electricity company Eneco won a tender offered by NS two years ago and the two companies signed a 10-year deal setting January 2018 as the date by which all NS trains should run on wind energy. ‘We in fact reached our goal a year earlier than planned,” said NS spokesman Ton Boon, adding that an increase in the number of wind farms across the country and off the coast of the Netherlands had helped NS achieve its aim.

They hope to reduce the energy used per passenger by a further 35% by 2020 compared with 2005.

8 years ago
The Fight Is Not Over.
The Fight Is Not Over.
The Fight Is Not Over.
The Fight Is Not Over.
The Fight Is Not Over.
The Fight Is Not Over.
The Fight Is Not Over.
The Fight Is Not Over.
The Fight Is Not Over.
The Fight Is Not Over.

The fight is not over.

follow @the-movemnt

8 years ago
The Art Of Lying
The Art Of Lying
The Art Of Lying
The Art Of Lying

The Art of Lying

  • catstumps
    catstumps liked this · 1 year ago
  • willitsjjj
    willitsjjj reblogged this · 1 year ago
  • everydaypoliticalcitizen
    everydaypoliticalcitizen liked this · 2 years ago
  • jits-posts
    jits-posts liked this · 3 years ago
  • miknguyen
    miknguyen reblogged this · 3 years ago
  • lunarlynova
    lunarlynova liked this · 3 years ago
  • evanmgjdw
    evanmgjdw reblogged this · 3 years ago
smparticle2 - Untitled
Untitled

258 posts

Explore Tumblr Blog
Search Through Tumblr Tags